La Fig. 2 montre l'enchaînement qui se développe suivant la direction moyenne (a, c) avec une périodicité de cinq polyèdres, deux de coordination de l'atome de potassium du site K(1), deux du site K(2) et un de l'atome de zinc. Référence

PREWITT, C. T. (1966). SFLS-5. A Fortran IV Full-Matrix Crystallographic Least-Squares Program.

Acta Cryst. (1978). B34, 17-20

Structure Cristalline d'un Monophosphate Acide Mixte de Nickel–Sodium Tétrahydraté NiNa₂H₈(PO₄)₄.4H₂O

PAR A. BOUDJADA, A. DURIF ET J. C. GUITEL

Laboratoire de Cristallographie, CNRS, 166X, 38042 Grenoble CEDEX, France

(Reçu le 29 juin 1977, accepté le 13 juillet 1977)

Acid nickel-sodium monophosphate tetrahydrate, NiNa₂H₈(PO₄)₄.4H₂O, is monoclinic with $a = 11 \cdot 10$ (2), b = 10.71 (2), c = 7.224 (5) Å, $\beta = 100.2$ (1)°, space group $P2_1/n$, Z = 2. The crystal structure has been determined from 2229 independent reflexions to a final *R* value of 0.036.

Préparation chimique et données cristallographiques

Si on maintient à température ambiante et à un *p*H compris entre 1,5 et 2 un mélange d'acide orthophosphorique dans lequel on a introduit du carbonate de nickel et du carbonate de sodium dans un rapport tel que Na/Ni = 2, on observe au bout de 5 à 6 jours l'apparition de cristaux de NiNa₂H₈(PO₄)₄.4H₂O se présentant sous la forme de prismes trapus de couleur verte.

Tableau 1. Diffractogramme de poudre de NiNa₂H₈(PO₄)₄.4H₂O effectué en utilisant la longueur d'onde $K\alpha_1\alpha_2$ du cuivre

<i>d</i> .	<i>d</i> .	I/I	h	k l	d	<i>d</i>	1/1	32
**cal	••obs	•/•0			cal	•• obs		31
7,659	7,628	82	2	22	2,459	2,459	12	23
6,518			4	20	2,435			2 2
5,932	5,922	55	- 4	21	2,425			20
5,571			1	41	2,414			12
5,532	5,525	79	Ź	32	2,409			40
5,466	5,455	29	Ī	03	2,409	2,411	18	<u>3</u> 1
5,367	5,356	41	2	40	2,409			04
4,917			1	32	2,393	2,395	11	21
4,871	4,864	60	• 4	02	2,381			23
4,818	4,809	15	4	11	2,353			41
4,354			Ī	13	2,351			32
4,285	4,285	11	Ž	41	2,338			4 I
4,143	4,143	8	4	12	2,325			14
3,852	3,855	100	0	13	2,317			33
3,830	3,831	40	3	31	2,313			Ī3
3,752	3,755	40	3	12	2,292			0.3
3,562	3,563	73	Ź	13	2,280			04
3,559			1	30	2,238			33
3,506	3,507	22	2	41	2,229			32
3,451			Ī	32	2,209			ī 4
	d _{cal} 7,659 6,518 5,932 5,571 5,532 5,466 5,367 4,917 4,818 4,354 4,285 4,143 3,852 3,830 3,752 3,562 3,556 3,451	$\begin{array}{ccc} d_{\rm cal} & d_{\rm obs} \\ 7,659 & 7,628 \\ 6,518 \\ 5,932 & 5,922 \\ 5,571 \\ 5,532 & 5,525 \\ 5,466 & 5,455 \\ 5,367 & 5,356 \\ 4,917 \\ 4,871 & 4,864 \\ 4,818 & 4,809 \\ 4,354 \\ 4,285 & 4,285 \\ 4,143 & 4,143 \\ 3,852 & 3,855 \\ 3,830 & 3,831 \\ 3,752 & 3,755 \\ 3,562 & 3,563 \\ 3,559 \\ 3,506 & 3,507 \\ 3,451 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Tableau 1 (suite)

h k l	$d_{\rm cal}$	dobs	I/I _o	hkl	$d_{\rm cal}$	d _{obs}	I/I _o
130	3.400	3,399	57	501	2,203		
112	3,393	- ,	•	421	2,200		
012	3.378			123	2,198		
311	3.333			113	2,191	2.191	14
202	3.259	3.261	10	232	2.188	_,	
221	3.210	3.211	8	422	2,177		
031	3,197	3,196	11	<u>3</u> 03	2,173		
Ī 3 I	3,137	3,135	34	430	2,172		
Ž 1 2	3,119			023	2,170		
112	3,084	3,086	12	4 31	2,164		
301	3,032			340	2,161		
320	3,015	3,015	35	511	2,158		
131	3,004			322	2,150		
230	2,994	2,993	21	ī 4 2	2,146		
i 2 2	2,976			042	2,143		
022	2,966	2,966	21	510	2,142		
321	2,935			Ž 2 3	2,140		
311	2,918	2,919	10	<u>3</u> 41	2,131		
231	2,861			313	2,130		
222	2,786	2,784	19	150	2,107		
202	2,766			2 4 2	2,072		
122	2,761			123	2,065		
400	2,733			142	2,061		
312	2,716			051	2,055		
040	2,684	2,684	51	151	2,039		
212	2,679	2,677	15	521	2,038		
231	2,668			520	2,025		
410	2,649			323	2,014		
321	2,640	2,639	34	2 1 3	2,011		
411	2,635	2,635	30	341	2,010		
140	2,606	2,607	11	402	2,002		
330	2,553	2,554	33	151	2,001		
132	2,530	2,529	8	431	2,000		
032	2,523	2,524	5	133	1,998	1,999	12
041	2,511		_	250	1,998		
331	2,504	2,505	7	512	1,996		
322	2,488	2,500	4	501	1,993		
141	2,481			432	1,983		

L'étude d'un cristal de ce sel montre qu'il est monoclinique, $P2_1/n$. Le Tableau 1 donne le dépouillement d'un diffractogramme de ce composé. L'affinement par moindres carrés des paramètres de maille effectué en utilisant les données angulaires de ce diagramme conduit à a = 11,108 (7), b = 10,733 (8), c = 7,233 (5) Å, $\beta = 100,24$ (1)°. La maille renferme deux unités formulaires.

Détermination de la structure

Le cristal utilisé était un prisme quadratique dont toutes les arêtes mesuraient environ 0,1 mm. 2535 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100 en utilisant la longueur d'onde de l'argent $K\alpha_1\alpha_2$ (0,5608 Å). Chaque réflexion a été mesurée en balayage ω dans un domaine de 1,40° à une vitesse de 0,03° s⁻¹. Le fond continu était mesuré durant 5 s à chaque extrémité de ce domaine. Le domaine angulaire exploré s'étendait de 3 à 28° (θ). Durant toute la durée des mesures les réflexions de référence utilisée (642 et 642) n'ont subi aucune variation significative. Aucune correction d'absorption n'a été effectuée.

L'examen de la fonction de Patterson nous a permis de localiser les atomes de nickel et de phosphore. Des synthèses de Fourier successives font alors apparaître l'ensemble de l'arrangement. Quelques cycles d'affinement (Prewitt, 1966) effectués avec la totalité des réflexions mesurées (2535) conduisent rapidement à un facteur R de 0,064 pour des facteurs thermiques isotropes. Après élimination de 306 réflexions très faibles mal mesurées et en introduisant les facteurs thermiques anisotropes la valeur finale du facteur Rs'établit à 0,036.

Le Tableau 2 donne les paramètres des positions atomiques et les B_{e_0} .

Tableau 2. Paramètres atomiques ($\times 10^{5}$) et coefficients de température isotrope B_{en} pour NiNa₂H₈(PO₄)₄.4H₂O

O(Wi): oxygène	des molécule	s d'eau.
O(ii): oxygène	du tétraèdre	$(Pi)O_1$

	Х.	<u>,</u> r	Z	$B_{eq}(\dot{A}^2)$
Ni	0	0 (77)	0 (156)	1,27
Na	54066 (11)	17130 (11)	24618 (16)	1,86
P(1)	8091 (6)	26109 (6)	26036 (9)	1.04
P(2)	71749 (6)	45432 (6)	26068 (9)	1,11
O(11)	49005 (18)	82958 (19)	10119 (26)	1.68
O(12)	21145 (17)	24645 (18)	36102 (26)	1.54
O(13)	48336 (19)	64039 (18)	30248 (28)	1,79
O(14)	42365 (20)	84738 (19)	41696 (27)	1,82
O(21)	63632 (21)	53862 (22)	10813 (29)	2,25
O(22)	67346 (18)	46914 (19)	44572 (26)	1,62
O(23)	80756 (19)	81570 (19)	30182 (28)	1,87
O(24)	84924 (17)	48506 (18)	26184 (29)	1,72
O(W1)	14832 (18)	56088 (18)	24155 (29)	1.81
O(<i>W</i> 2)	8227 (17)	87216 (18)	21549 (27)	1,62

Tableau3. Axes principaux des ellipsoïdes de
vibration thermique

 U^2 : carrés moyens des amplitudes de vibration thermique (Å²) le long des axes principaux des ellipsoïdes. θ_a , θ_b , θ_c : angles de ces axes avec les axes cristallographiques *a*, *b* et *c*.

	$U(\text{\AA})$	$ heta_a$ (°)	$\theta_h(^\circ)$	$\theta_{c}(^{\circ})$
Ni	0,137	48	125	70
	0.124	93	54	37
	0.118	42	55	120
Na	0.163	32	107	73
	0.156	86	28	64
	0.140	122	111	32
P(1)	0.118	11	100	105
- (-)	0.115	84	86	16
	0.110	80	11	97
P(2)	0.134	81	16	105
- (-/	0.115	67	81	35
	0.104	25	103	121
0(11)	0.176	132	42	80
0(11)	0.135	67	74	37
	0.122	51	53	126
0(12)	0.164	95	30	60
0(12)	0.133	84	119	33
	0.118	7	83	103
O(13)	0.183	55	56	60
0(11)	0.145	134	94	34
	0,115	116	34	105
O(14)	0,185	13	77	98
	0,147	100	31	117
	0,117	98	62	28
O(21)	0,225	60	35	79
	0,137	130	82	31
	0,127	54	124	61
O(22)	0,176	65	26	100
	0,130	26	114	88
	0,117	98	81	10
O(23)	0,194	51	54	68
	0.139	134	82	35
	0,121	110	37	115
O(24)	0,183	92	84	11
	0,136	90	6	96
	0,117	2	90	99
O(W1)	0,174	135	71	42
	0,144	52	98	49
	0.134	70	21	99
O(W2)	0,152	72	36	123
	0.146	74	64	37
	0,130	24	114	104

Dans le Tableau 3 sont rassemblées les longueurs et orientations des axes principaux des ellipsoïdes de vibration thermique.*

Description de la structure

Les Figs. 1 et 2 représentent respectivement les projections de l'arrangement atomique sur les plans *ab*

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32938: 25 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary. International Union of Crystallography, 13 White Friars, Chester CH1 INZ, Angleterre.

et *bc.* Le Tableau 4 donne les principales distances interatomiques et angles des liaisons dans cet arrangement. Les moyennes des distances P–O dans les deux tétraèdres indépendants sont très voisines: 1,538 Å pour P(1)O₄ et 1,537 Å pour P(2)–O(4). Les deux cations associés ont des coordinations octaédriques formées de quatre atomes d'oxygène et de deux molécules d'eau. Si l'on examine l'enchaînement des cations associés, on observe des groupements finis formés par deux octaèdres NaO₆ encadrant l'octaèdre NiO₆ la liaison entre ces octaèdres ètant assurée par la molécule d'eau O(W2). La Fig. 3 donne une représentation schématique de ces groupements NiNa₂O₁₆

Fig. 1. Projection de la structure selon [001].

Fig. 2. Projection de la structure selon [100].

Tableau 4. Distances interatomiques en Å et angles de liaison en degrés et 1/100 de degré dans l'arrangement atomique NiNa₂H₈(PO₄)₄.4H₂O

Sur la diagonale, soulignées, sont indiquées les distances P(i)O(ij). Au-dessus de la diagonale sont indiquées les angles O(ij)P(i)O(ij'). Au-dessous de la diagonale sont indiquées les distances oxygèneoxygène.

P(1)	O(11)	O(12)	O(13)	O(14)
O(11)	1,561 (2)	106.9 (1)	109,3 (1)	107,4 (1)
O(12)	2,467 (3)	1.510(2)	114,8(1)	110.1 (1)
O(13)	2,503 (3)	2.541 (3)	1,507 (2)	108.3 (1)
O(14)	2,526 (3)	2,527 (3)	2,496 (3)	1,573 (2)
P(2)	O(21)	O(22)	O(23)	O(24)
O(21)	1,578 (2)	108,9(1)	106,9 (1)	108,3 (1)
O(22)	2,513 (3)	1,511(2)	106,7 (1)	116,1 (1)
O(23)	2,523 (3)	2,465 (3)	1,562 (2)	109,5 (1)
O(24)	2,494 (3)	2,553 (3)	2,500 (3)	1,498 (2)
(×2) Ni-O((×2) Ni-O((×2) Ni-O(13) 2,0 22) 2,0 W2) 2,1	960 (10) 959 (5) 51 (9)	Na-O(11) Na-O(14) Na-O(23) Na-O(24) Na-O(W2) Na-O(W1)	2,472 (2) 2.404 (2) 2.358 (3) 2.345 (2) 2,589 (2) 2,424 (2)

Fig. 3. Schéma des groupements NiNa₂O₁₆.

Fig. 4. Projection des groupements NiNa₂O₁₆ sur bc.

tandis que la Fig. 4 montre la projection sur le plan bc de l'ensemble de ces groupements.

Référence

Ce composé est à notre connaissance le seul monophosphate acide connu dans le système $NiO-Na_{1}O-P_{2}O_{4}-H_{1}O$.

PREWITT, C. T. (1966). SFLS-5. A Fortran IV Full-Matrix Crystallographic Least-Squares Program.

Acta Cryst. (1978). B34, 20–22

Données Cristallochimiques et Structure Cristalline du Trimétaphosphate: $CdK_4(P_3O_9)_2.2H_2O$

PAR M. T. AVERBUCH-POUCHOT

Laboratoire de Cristallographie, CNRS, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 30 juin 1977, accepté le 13 juillet 1977)

The trimetaphosphate CdK₄(P₁O₉), 2H₂O is triclinic, space group P_1^{\uparrow} , with one formula unit in a cell with a =9.235(5), b-7.599(4), c-7.148(4)Å, $\alpha = 96.38(1), \beta = 103.90(1), \gamma = 102.06(1)^{\circ}$. The cations link the P_3O_9 ring anions in three dimensions. The final R value is 0.04.

Préparation chimique

CdK₄(P₃O₉)₂.2H₂O a été préparé en utilisant la méthode décrite par Boullé (1938), pour la préparation du trimétaphosphate de calcium. L'introduction de chlorure de cadmium et potassium dans une suspension d'Ag₃P₃O₉.H₂O dans l'eau, les trois sels étant en proportion stoechiométrique, provoque la précipitation de chlorure d'argent et la libération des ions P₃O₉ dans la solution. Après filtration, l'évaporation lente de la solution, à la température ambiante, provoque la formation de cristaux de $CdK_4(P_3O_9)_2.2H_2O_1$

Données expérimentales

Le cristal utilisé était une plaquette épaisse de dimensions: $0.08 \times 0.13 \times 0.16$ mm. Les intensités de 2738 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre Philips PW 1100 fonctionnant, avec monochromateur, à la longueur d'onde $K\alpha$ de l'argent. Les conditions de mesure sont les suivantes: domaine angulaire: $3-26^{\circ}$ (θ), mode balayage: ω , largeur de balavage: 1.60° , vitesse de balavage: 0.02° s⁻¹.

En raison des dimensions suffisamment petites du cristal et de longueur d'onde choisie, aucune correction d'absorption n'a été nécessaire. Un affinement par moindres carrés de quelques valeurs angulaires obtenues à l'aide du diffractomètre automatique conduit à la maille triclinique donnée dans l'abstract. Cette maille diffère quelque peu de celle trouvée [a = 9,219 (4), b =7,588 (4), c = 7,133 (4) Å, $\alpha = 96,42$ (1), $\beta =$

 $103,91(1), \gamma = 102,08(1)^{\circ}$ à partir des valeurs angulaires relevées sur un diagramme de poudre fait sur diffractomètre Philips à la longueur d'onde $K\alpha$ du cuivre, à la vitesse de $\frac{1}{8}^{\circ}$ (θ) min⁻¹.

Le Tableau 1 donne le dépouillement de ce diagramme.

Tableau 1. Dépouillement d'un diagramme de poudre $de \operatorname{CdK}_4(P_3O_9)_2.2H_2O$

hkl	$d_{\rm cal}$	d_{obs}	I_{obs}	hkl	d_{cal}	d_{obs}	$I_{\rm obs}$
100	8,68	8,66	18	211	3,345)	2 242	20
010	7,31	7,30	40	121	3,340)	3,342	30
001	6,82			012	3,316	3,314	17
110	6,42	6,41	100	201	3,280	3,281	19
10 Î	6,25			1 I Ž	3,268	3,270	17
01Ī	5,48	5,47	5	2 Ž 0	3,209	3,208	9
110	5,02			Ī 2 1	3,183	3,185	6
111	4,80	4,80	74	121	3.128)	2 1 20	75
101	4,77	4,77	24	2 O Ž	3,125)	3,129	25
11Ī	4,70	4,70	12	120	3.107	3,110	31
011	4,61	4,61	16	Ī 1 2	3.078		
111	4,56	4,56	13	021	3,015	3.015	9
200	4,34	4,34	13	30 Ī	2,968)	2 064	
20 Î	4,21	4 21	20	Ž 2 1	2.963Ĵ	2,904	33
210	4,215	4,21	50	112	2,950		
211	3,881	3,881	8	3 İ O	2,947		
120	3,709	3,708	42	311	2.937		
020	3,656			102	2.916	2012	20
111	3,599	3,599	3	012	2,907∫	2.912	29
102	3,516	3,516	4	Ž 1 2	2.894)	2 806	20
021	3,479			300	2.892∫	2,090	30
2 I İ	3,459	3,460	8	212	2.853		
002	3,411	3,411	6	2 2 1	2,849		
210	3,385			0 2 Ž	2.738	2 7 2 5	11
				211	2,732\$	2,135	11